miércoles, junio 20, 2007

Rehabilitacion Biomecanica Avanzada del trauma cerebral

Leyendo el diario me enteré de esta técnica que no conocía.

"Advanced Biomechanical Rehabilitation" cuya
traducción al castellano es: Rehabilitación Biomecánica Avanzada.
ABR es el único método de rehabilitación basado en la biomecánica
que proporciona una recuperación de la estructura músculo-esquelética
y funciones motoras a niños y jóvenes adultos con daño cerebral.

http://www.abrtherapy.com.ar


martes, junio 12, 2007

La Isradipina de uso en hipertension frenaria el parkinson

La Isradipina, una droga conocida y de uso en Argentina (DYNACIRC SRO NOVARTIS
Calcioantagonista Antihipertensivo ) frena el parkinson en un modelo de la enfermedad en ratones.

Explicado sencillamente y sin mayores exactitudes el mecanismo protector consiste en que la isradipina bloquea los canales de calcio y así hace que la neurona deteriorada que produce dopamina (son limitadas y tienden a morir especialmente en el parkinson) deje de usar calcio para activar su funcionamiento y vuelva a usar sodio como una neurona sana y joven.

La droga podría también beneficiar al hacer necesario menor dosis de medicaciones como la L-DOPA y mantenerla eficaz y no tener que usar cada vez dosis mayores como les pasa a los pacientes de parkinson.

Se habla también del posible uso preventivo y terapéutico en parkinson.

Drug slows and may halt Parkinson's disease

CHICAGO -- Northwestern University researchers have discovered a drug that slows – and may even halt – the progression of Parkinson's disease. The drug rejuvenates aging dopamine cells, whose death in the brain causes the symptoms of this devastating and widespread disease.
...
Dopamine is a critical chemical messenger in the brain that affects a person's ability to direct his movements. In Parkinson's disease, the neurons that release dopamine die, causing movement to become more and more difficult.
...
"Our hope is that this drug will protect dopamine neurons, so that if you began taking it early enough, you won't get Parkinson's disease, even if you were at risk. " said Surmeier, who heads the Morris K. Udall Center of Excellence for Parkinson's Disease Research at Northwestern. "It would be like taking a baby aspirin everyday to protect your heart."

Isradipine may also significantly benefit people who already have Parkinson's disease. In animal models of the disease, Surmeier's team found the drug protected dopamine neurons from toxins that would normally kill them by restoring the neurons to a younger state in which they are less vulnerable.

The principal therapy for Parkinson's disease patients currently is L-DOPA, which is converted in the brain to dopamine. Although L-DOPA relieves many symptoms of the disease in its early stages, the drug becomes less effective over time. As the disease progresses, higher doses of L-DOPA are required to help patients, leading to unwanted side-effects that include involuntary movements. The hope is that by slowing the death of dopamine neurons, isradipine could significantly extend the time in which L-DOPA works effectively.

"If we could double or triple the therapeutic window for L-DOPA, it would be a huge advance," Surmeier said.
...
Because he's a physiologist, Surmeier decided to investigate whether the electrical activity of dopamine neurons might provide a clue to their vulnerability. All neurons in the brain use electrical signals to do their job, much like digital computers.

First, Surmeier observed that dopamine neurons are non-stop workers called pacemakers. They generate regular electrical signals seven days a week, 24 hours a day, just like pacemaker cells in the heart. This was already known. But then he probed more deeply and discovered something very strange about these dopamine neurons.

Most pacemaking neurons use sodium ions (like those found in table salt) to produce electrical signals. But Surmeier found that adult dopamine neurons use calcium instead.

Sodium is a mild mannered ion that does its job without causing a whit of trouble to the cell. Calcium ions, however, are wild and rambunctious.
...
"The reliance upon calcium was a red flag to us," Surmeier said. Calcium ions need to be chaperoned by the cell almost as soon as they enter to keep them from causing trouble, he noted. The cell has to sequester them or keep pumping them out. This takes a lot of energy.
...
Surmeier theorized that the non-stop stress on the dopamine neurons explains why they are more vulnerable to toxins and die at a more rapid rate as we age.
...
When the neurons are young, Surmeier found they actually use sodium ions to do their work. But as the neurons age, they become more and more dependent on the troublesome calcium and stop using sodium. This calcium dependence – and the stress it causes the neurons --is what makes them more vulnerable to death.

What would happen, Surmeier wondered, if he simply blocked the calcium's route into the adult neuron cells" Would the neurons revert to their youthful behavior and start using sodium again"

"The cells had put away their old childhood tools in the closet. The question was if we stopped them from behaving like adults would they go into the closet and get them out again"" Surmeier asked. "Sure enough, they did."

When he gave the mice isradipine, it blocked the calcium from entering the dopamine neuron. At first, the dopamine neurons became silent. But within a few hours, they had reverted to their childhood ways, once again using sodium to get their work done.

"This lowers the cells' stress level and makes them much more resistant to any other insult that's going to come along down the road. They start acting like they're youngsters again," Surmeier said.

The next step will be launching a clinical study.

"This animal study suggests that calcium channel blockers, drugs currently used to reduce blood pressure, might someday be used to slow the steady progression of Parkinson's disease," said Walter J. Koroshetz, M.D., deputy director of the NINDS.


domingo, junio 10, 2007

Los 14 mejores alimentos para el cerebro

Pon buen alimento en tu cerebro cada día. Eres lo que comes. Cada célula en tu cuerpo se hace de nuevo cada 5 meses. Eres literalmente lo que comes.

En el libro Super Foods hay una lista de los 14 mejores alimentos, que son todos muy buenos para la función del cerebro. Intente incorporarlos en su dieta cada semana.

Aquí está la lista: arándanos (la mayoría de las bayas, pero especialmente arándanos), brócoli, habas (pinto, navy, lima, garbanzos, lentejas, sugar snap peas, guisantes), naranjas, avena, calabaza (puré, no pastel), salmón silvestre, espinaca, soja, (especialmente verde), tomates, pavo (o pollo), nueces, y yogur.

Según el lugar a las "bayas" se las llama "frutos rojos" y a las "habas" chauchas, arvejas.

De:
Put good food into your brain each day. You are what you eat. Every cell in your body makes itself new every 5 months. You literally are what you eat. In the book Super Foods there is a list of the 14 best foods, which are all very good for brain function. Try to incorporate them into your diet every week. Here s the list: blueberries (most berries, but especially blueberries), broccoli, beans (pinto, navy, lima, chickpeas, lentils, sugar snap peas, peas), oranges, oats, pumpkin (squash not pie), wild salmon, spinach, soy, tea (especially green), tomatoes, turkey (or chicken), walnuts, and yogurt.

amenclinics.com